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Abstract

Immunogenicity is a major problem during the development of biotherapeutics since it can

lead to rapid clearance of the drug and adverse reactions. The challenge for biotherapeutic

design is therefore to identify mutants of the protein sequence that minimize immunogenicity

in a target population whilst retaining pharmaceutical activity and protein function. Current

approaches are moderately successful in designing sequences with reduced immunogenic-

ity, but do not account for the varying frequencies of different human leucocyte antigen

alleles in a specific population and in addition, since many designs are non-functional,

require costly experimental post-screening. Here, we report a new method for de-immuniza-

tion design using multi-objective combinatorial optimization. The method simultaneously

optimizes the likelihood of a functional protein sequence at the same time as minimizing its

immunogenicity tailored to a target population. We bypass the need for three-dimensional

protein structure or molecular simulations to identify functional designs by automatically

generating sequences using probabilistic models that have been used previously for muta-

tion effect prediction and structure prediction. As proof-of-principle we designed sequences

of the C2 domain of Factor VIII and tested them experimentally, resulting in a good correla-

tion with the predicted immunogenicity of our model.

Author summary

Therapeutic proteins have become an important area of pharmaceutical research and

have been successfully applied to treat many diseases in the last decades. However,

biotherapeutics suffer from the formation of anti-drug antibodies, which can reduce the

efficacy of the drug or even result in severe adverse effects. A main contributor to the anti-

body formation is a T-cell mediated immune reaction caused by presentation of small

immunogenic peptides derived from the biotherapeutic. Targeting these peptides via
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sequence alterations reduces the immunogenicity of the biotherapeutic but inevitably will

have effects on structure and function. Experimentally determining optimal mutations is

not feasible due to the sheer number of possible sequence alterations. Therefore, computa-

tional approaches are needed that can effectively cover the complete search space. Here,

we present a computational method that finds provable optimal designs that simulta-

neously optimize immunogenicity and structural integrity of the biotherapeutic. It relies

solely on sequence information by utilizing recent advances in protein ab initio prediction

and incorporates immunogenicity prediction methods. Thus, the approach presents a

valuable tool for bioengineers to explore the design space to find viable candidate designs

that can be experimentally tested and further refined.

Introduction

Protein-based drugs (biotherapeutics) are increasingly used to treat a wide variety of diseases

[1, 2]. Although biotherapeutics show high activity and specificity at the initiation of treat-

ment, the gradual build-up of a patient immune response is a bottleneck for even wider usage

[3]. The immunogenicity of the biotherapeutic is influenced by multiple factors that can be

roughly divided into extrinsic—such as dosage, rout of administration, duration and produc-

tion impurities—and intrinsic properties like the protein sequence or post-translational modi-

fications [3]. This immune response involves the formation of anti-drug antibodies (ADAs)

that target the biotherapeutic itself and cause loss of effect or adverse reactions[3–5]. A promi-

nent example of this adverse effect is in the treatment of hemophilia A (HA) with coagulation

Factor VIII, where ADAs develop in 10–15% of all HA patients and as much as 30% of those

patients with the most severe form of HA[6]. Patients with the highest need for therapy are

thus least likely to benefit. This correlation between severity of the disease and lack of efficacy

follows from the fact that the immune system is more likely to recognize the therapeutic Factor

VIII as foreign the more severe the natural mutation is, where mutations that cause a total loss

of Factor VIII production are most strongly associated with ADA development[7, 8].

The reduction of the immunogenicity has thus become a major step in a the development

of a biotherapeutic[5]. The primary focus of reducing immunogenicity has been on humanized

monoclonal antibodies (mAbs) that are comprised of foreign complementarity-determining

regions in the variable regions, with the remainder of human origin, and, more recently, on

fully human mAbs using bioengineering techniques[9, 10]. However, these approaches are not

generally applicable to other classes of biotherapeutics and even humanized and full human

mAbs can still induce a clinically relevant anti-drug immune response, likely through the

CD4+ T-cell mediated adaptive immune system[11, 12]. The CD4+ T-cell activation is induced

by the recognition of linear sequential peptides (called epitopes) derived from the therapeutic

protein, which are presented on human leucocyte antigen (HLA) class II molecules of antigen

presenting cells. Therefore, the systematic removal of these epitopes by sequence alteration

(termed de-immunization) has been successfully used as an alternative approach to reduce the

immunogenicity of mAbs and other therapeutic proteins [12–16].

In recent years, computational screening approaches have been developed to suggest pro-

tein sequences with reduced overall immunogenicity. The simplest approaches focused solely

on introducing point mutations to reduce the amount of CD4+ T-cell epitopes by applying

well-established epitope prediction methods [17–19]. However, the suggested mutations can

have a significant impact on the stability and function of the protein. Naïve approaches not

considering the structural impact on the protein will inevitably produce inactive designs. More
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advanced methods therefore try to exclude potentially harmful mutations by predicting their

impact with various metrics [20]. The most recent approaches simultaneous optimize the

number of deleted epitopes as well as the stability of the protein approximated either using

structural or simple sequence information [21–23].

Recent advances in statistical protein modeling now allow to accurately infer the tertiary

structure [24–28] and mutational effects [29–31] of proteins using evolutionary information

contained in an multiple sequence alignment of a protein family. The statistical global pairwise

entropy model used for protein inference accurately captures co-evolving sites within a protein

which can be utilized to identify structural and functional important position using evolution-

ary couplings (EC) analysis, infer the protein structure, and predicted the effects of mutational

changes.

In this work, we present a novel formulation of the de-immunization problem that uses, for

the first time to our knowledge, the maximum entropy model for protein design. Incorporat-

ing the maximum entropy model, as opposed to force-field based approaches such as FoldX

[32] that have been previously used for protein de-immunization, has four distinct advantages:

(i) The statistical model does not require a known structure or depend on the conditions in

which the structure was measured. (ii) It implicitly considers constraints on residues from

interactions with ligands and other proteins, and (iii) models interactions between mutations

rather than early filtering of deleterious singles. (iv) A de-immunization approach using the

maximum entropy model is likely to generate more viable structures as it minimizes potential

damage to protein function at the same time as minimizing the immunogenicity of the bio-

therapeutic design. The latter can also be achieved by incorporating a force field, such as

AMBER[33], into the optimization process [21, 22], which however complicates the de-immu-

nization formulation.

As the frequencies of HLA alleles differ drastically between populations, the immunogenic-

ity of the biotherapeutic differs as well. It is thus imperative to design a biotherapeutic for a

specific target population considering their HLA allele frequencies, as opposed to treating each

HLA allele equally important during the design process, as all previous methods have done.

We therefore developed a new quantitative immunogenicity objective that builds on HLA

affinity prediction methods for immunogenicity approximation, as their exists a strong corre-

lation between immunogenicity and HLA binding affinity[34], and considers the HLA allele

distributions within different populations. The resulting de-immunization model does not

require known structural information about the protein, summarizes functional and structural

information that might not be captured by a structure-based model, and considers the varying

HLA frequencies in different populations. We also demonstrate how the resulting bi-objective

combinatorial optimization problem can be formulated in a concise manner and solved effi-

ciently for relevant problem sizes with a newly developed distributed solving strategy. An

experimental validation of the resulting designs confirms that the algorithm can indeed lead to

significantly reduced immunogenicity.

Results

Formulation of the de-immunization problem

The problem of protein de-immunization can be described as identifying amino acid substitu-

tions that reduce immunogenicity by removing T-cell epitopes while at the same time keeping

the structure and function of the protein intact. We therefore define the problem of protein

de-immunization as a bi-objective optimization problem. The first objective characterizes the

immunogenicity of the target protein with respect to a set of HLA alleles. The immunogenicity

objective I(S|H,PH) combines the immunogenicity of each predicted epitope over a certain
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binding threshold weighted by the HLA allele frequencies PH of a specific target population

represented by their prevalent HLA alleles H [35]. The second objective E(S) approximates the

protein fitness via the statistical energy of the protein sequence, computed by the pairwise

maximum entropy model inferred using a multiple sequence alignment (MSA) of the target

protein family[24–28].

More formally, we define the protein de-immunization problem as follows: Given a protein

sequence S of length n and a set Mi of possible alterations per position 1� i� n. We seek a

mutant S0 of S with k alterations for which S0[i] 2Mi 8 1� i� n holds and that minimizes:

argminS0 ðIðS0jH; PHÞ; � EðS0ÞÞ

s:t: S0 2 X;

The model therefore optimizes the tradeoff between these two objectives and produces a set

of Pareto-optimal designs of the protein sequence.

Immunogenicity objective function definition

The first objective of the de-immunization model is an adaptation of the immunogenicity

score introduced by Toussaint et al. for epitope selection in the context of in silico vaccine

design and is defined as follows [35]:

IðEjH; PHÞ ¼
P

e2A

P
h2Hph � ie;h;

with A being a set of epitopes, ie,h the immunogenicity of epitope e 2 A bound to HLA allele h
2H. It assumes that each epitope independently influences the immune response with respect

to all considered HLA alleles. The contribution of an HLA allele h 2H is directly proportional

to its probability ph of occurring within the target population H.

Protein fitness objective function definition

The second objective is an evolutionary statistical energy of sequences computed by a pairwise

maximum entropy model of protein families. Under these family-specific models, the proba-

bility for a protein sequence (X1,. . ., Xn) of length n is defined as

PðX1; . . .XnÞ ¼
1

Z
e� EðxÞ

EðXÞ ¼
P

1�i<j�nJijðXi;XjÞ þ
P

1�i�nhiðXiÞ

where the pair coupling parameters Jij(Xi, Xj) describe evolutionary co-constraints on the

amino acid configuration of residue pairs i and j for all amino acids and the parameters hi(Xi)
corresponds to single-site amino acid constraints. The partition function Z is a global normali-

zation factor summing over all possible amino acid sequences of length n [24, 25]. The param-

eters Jij and hi are inferred from a protein family sequence alignment using an iterative

approximate maximum likelihood inference scheme (pseudo-likelihood maximization) under

l2-regularization to prevent overfitting. Given an inferred probability model for a family, the

statistical energy −E(X) can be used to quantify the fitness of specific sequences. Recent work

has demonstrated that changes of E(X) quantitatively correspond to the experimental pheno-

typic consequences of mutations, including effects on protein stability and organismal growth

[31]. To maintain protein function while minimizing immunogenicity, the second objective

function is defined as the minimization of −E(X) given inferred parameters hi and Jij from a

multiple sequence alignment of the biotherapeutic.
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Evolutionary coupling (EC) strength between pairs of positions i and j is computed using

the Frobenius norms of the matrices Jij with subsequent correction for finite sampling and

phylogenetic effects (average product correction)[27]. The evolutionary couplings are predic-

tive of residue proximity in many protein families, and the cumulative score of one position to

all others (EC enrichment score) is indicative of functionally and structurally important posi-

tions [27].

Derivation of the integer linear program representation of the de-

immunization model

We solve the stated de-immunization problem as a bi-objective mixed integer linear program

(BOMILP). Solving a BOMILP finds all Pareto-optimal solutions to linear objectives with

affine constraints and additional integrality constraints on a subset of the variables. The model

is based on Kingsford et al.’s ILP formulation of the side-chain placement problem [36]. But

instead of selecting energetically favorable rotamers, we encode each state of the model as a

possible amino acid substitution at each position. A binary decision variable xi,a for each posi-

tion i 2 {1..n} and each possible variation a 2Mi is introduced with xi,a = 1 if this variant will

be part of the final mutant S0. An additional binary variable is introduced for each pair of vari-

ants and positions notated wi,j,a,b with wi,j,a,b = 1 if variant a at position i and variant b at posi-

tion j have been selected as part of the solution S0. These variables are associated with their

inferred fitness terms hi,a and Ji,j,a,b to form the second objective function (Table 1 O2).

The immunogenicity objective, in contrast to the problem formulation of Toussaint et al.,
in which the immunogenicity of each candidate epitope e 2 A could be pre-calculated, does

not have an easy ILP representation. Prediction methods must be directly incorporate into the

ILP to approximate the immunogenicity of the current mutant S0. Therefore, we use TEPITO-

PEpan [37], a linear HLA-epitope affinity prediction method, as internal prediction engine

since it has been demonstrated to have good predictive power and can be easily integrated into

the ILP framework. More advanced, potentially non-convex non-linear prediction models

such as artificial neural networks cannot readily be integrated into the problem formulation as

the resulting optimization problem would be discreet, non-convex, and non-linear. This class

of optimization problems is known to be hard to solve to optimality even for small instances

[38] and thus out of reach for design problems of relevant size.

With linear (matrix-based) methods, the integration is possible by scoring each peptide

generated with a sliding window of width en for each allele h 2 H independently by summ-

ing over TEPITOPEpan’s position specific scoring matrix Fðh; a; jÞ ! R�0 for amino acid

Table 1. Bi-objective integer linear program formulation of the de-immunization problem.

Definition:

Objectives:

(O1) minx;w

P
h2Hph �

Pn� en
i¼1

maxð0; ð
Pen � 1

j¼0

P
a2Miþj

xiþj;a � ϕðh; a; jÞÞ � τhÞ

(O2) minx;w

Pn
i¼1

xi;a � hi;a þ
Pn

i¼1

P
1�i<j�n wi;j;a;b � Ji;j;a;b

Constraints:

(C1)
P

a2Mi
xi;a ¼ 1 8 i 2 {1..2}

(C2)
P

b2Mj
wi;j;a;b ¼ xi;a 8 i, a 2Mi, i> j 2 {1..n}

(C3)
P

a2Mi
wi;j;a;b ¼ xj;b 8 j, b 2Mj, j> i 2 {1..n}

(C4)
Pn

i¼1

P
a2Wi
ð1 � xi;aÞ � k

https://doi.org/10.1371/journal.pcbi.1005983.t001

Population-specific de-immunization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005983 March 2, 2018 5 / 19

https://doi.org/10.1371/journal.pcbi.1005983.t001
https://doi.org/10.1371/journal.pcbi.1005983


a 2Mi+j at position i + j with i 2 {1..(n – en)} and j 2 {0..(en − 1)}. To only consider predicted

binding epitopes, the binding threshold τh of each HLA allele h 2 H is subtracted from the

sum score of an epitope and embedded into a hinge loss function. The summarized contribu-

tion of an allele h 2H is than weighted by its population probability ph. To make the prediction

scores comparable across HLA alleles, the position specific scoring matrices of TEPITOPEpan

were z-score normalized and the binding thresholds adjusted accordingly. The final immuno-

genicity score consists of the sum of all allele-wise weighted sums (Table 1, O1).

To construct a consistent model, three constraints have to be introduced guaranteeing that

only one amino acid per position is selected (Table 1, C1) and that only pairwise interactions

are considered for selected variants (i.e., Ji,j,a,b, = 1$ xi,a = 1 ^ xj,b = 1, see Table 1 C2 and C3).

Constraints C2 and C3 can be further relaxed by dividing the pairwise fitness values into posi-

tive and negative sets [36], which is done in practice but disregarded here for ease of presenta-

tion. To be able to restrict the mutant to a specific number of introduced variations, constraint

C4 limits the number of deviating amino acids to the wild type sequence W. A detailed formu-

lation of the complete optimization problem can be found in S2 Material.

Computational and experimental evaluation

As proof-of-principle, we tested the ability of the model to find low immunogenic constructs

of the C2 domain of Factor VIII as the domain is highly immunogenic and involved in the

ADA development in hemophilia A patients when used therapeutically [39, 40].

Evolutionary couplings accurately predict structure and mutational effects

Evolutionary couplings computed from sequence alignments have been used successfully to

predict the phenotypic effects of mutations [29–31, 41], as well as the 3D structure shown in

earlier work [24–28]. The approach assigns an evolutionary statistical energy to any protein

sequence that is hypothesized to correspond to the fitness of the molecule. The computation of

the statistical energy of the protein and any changes to it after mutation is automatic and does

not depend on computing or knowing the 3D structure. Therefore, we reasoned that we could

use this statistical model in a generative mode for design within the algorithmic de-immuniza-

tion process.

Previous work on predicting the effect of mutations suggested that the model accuracy

depends on the diversity of the sequence alignment and the ability to predict the 3D structure

accurately[31]. We used the precision of the total epistatic constraints between residue pairs as

an approximation of the model validity. Overall, 70 long-range evolutionary coupled residue

pairs (ECs) have a probability of at least 90% of being significant and 65 of these (93% preci-

sion) are close in space (less than 5Å; Fig 1A, Supplementary S1 Material) in a 3D structure of

Factor VIII’s C2 domain (pdb: 3hny[42]; Fig 1B).

To assess how well maximum entropy model can predict the effects of specific mutations

compared to force-field methods, we used our maximum entropy model and FoldX predic-

tions in a multinomial and logistic regression to predict hemophilia A severity (severe, moder-

ate, and mild) based on patient data collected from the Factor VIII variant database (http://

www.factorviii-db.org, Supplementary S1 Table). Since the severity of HA is directly correlated

with instability and malfunctioning of Factor VIII, the prediction of disease severity can be

seen as a proxy for functional and structural effect prediction. The multinomial regression

model, using the change in statistical energy between mutant and wild type as independent

variable, shows a moderate ability to predict the clinical outcome (F1-micro of 0.65 ± 0.09,

F1-macro of 0.47 ± 0.07).
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The performance of a FoldX-based multinomial regression model however was signifi-

cantly worse (one-sided Wilcoxon signed rank test, V = 13558, p-value < 2.2e-16; F1-micro

of 0.49 ± 0.11, F1-macro of 0.35 ± 0.09). We combined the severe and moderate clinical

classes and performed a logistic regression, which improved the prediction performance of

our maximum entropy model (weighted AUC of 0.72 ± 0.11, weighted F1-score of 0.73 ± 0.11;

Supplementary S1 Table; Fig 1C). The FoldX-based logistic regression model was again out-

performed by our maximum entropy model (one-sided Wilcoxon signed rank test, V = 15633,

p-value < 2.2e-16; Fig 1D), but also yielded higher predictive power compared to its multino-

mial model (weighted AUC: 0.62 ± 0.11, weighted F1 0.58 ± 0.13).

Fig 1. (A) Contact map of Factor VIII’s C2 domain. The gray circles represent the known crystal structure (pdb: 3hny), while the

orange dots represent predicted evolutionary couplings. (B) The tertiary structure of Factor VIII’s C2 domain (pdb: 3hny). (C)

Statistical energy/fitness change density separated by HA severity status (red and yellow) and the complete maximum entropy

landscape of single point mutations (blue). As expected, all known single point mutations with known HA severity status reside in

the lower percentile of the energy landscape. The severe and moderate HA cases are clearly separable from the mild cases using

the maximum entropy model prediction. In contrast, the two distributions cannot be clearly separated using FoldX predictions

(D).

https://doi.org/10.1371/journal.pcbi.1005983.g001
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Strong immunogenic region contains functional sites

We first in silico identified a narrow region of high immunogenic potential for the three

most prevalent HLA alleles in the European population (DRB1�15:01, DRB1�03:01 and

DRB1�07:01; accounting for 70% of the patients in Western Europe) to facility experimental

evaluation.

We screened the C2 domain of Factor VIII using TEPITOPEpan [37] for peptides binding

to the three HLA alleles. Each peptide that fell into the 95% percentile of TEPITOPEpan’s

score distribution of an HLA molecule was considered an epitope. We predicted 16 epitopes in

6 regions of the C2-domain of Factor VIII (UniProt: FA8_HUMAN). The region with the

highest scoring immunogenicity (residues 2,312–2,340) had nine of the 16 predicted strong

binding epitopes (Fig 2A and 2B), making it a prime candidate region for de-immunization

design. However, there is evidence that this very region might be of high functional impor-

tance for the protein; The region is enriched for conserved co-variation of residues and

Fig 2. (A) Immunogenicity screening for three DRB1 alleles (DRB1�15:01, DRB1�03:01 and DRB1�07:01) with TEPITOPEpan. All peptides who’s

predicted binding affinity fell into the 95% percentile of TEPITOPEpan’s score distributions have been considered epitopes. The blue regions depict the

cumulative number of predicted epitopes per position and the orange regions depict the EC cumulative summary scores of top 70 ECs. Six immunogenic

regions can be identified based on the in silico screening, with region 2,321 to 2,340 having the highest number of overlapping epitopes (9 out of 16

predicted epitopes) and was thus chosen as de-immunization target. It is comprised of the highest evolutionary coupling pairs. (B) The tertiary structure of

Factor VIII’s C2 domain of with highlight immunogenic region selected for de-immunization redesign in blue. (C) The tertiary structure of Factor VIII’s

C2 domain with marked top eight EC (red spheres) that coincide with the identified immunogenic region (blue).

https://doi.org/10.1371/journal.pcbi.1005983.g002
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contains a known membrane-binding motif [42]. Eight of the top ten evolutionary couplings

involve residues in the high immunogenic region (Fig 2C). In general, the region is enriched

for strong evolutionary couplings (sign test, s = 124, n = 130, p-value< 2.2e-16, CI95 = [0.90,

0.98]; Fig 2A). Hence there is a risk that mutations designed to minimize immunogenicity

could be detrimental to protein function and the method we have developed here is specifically

designed to minimize the risk of both.

De-immunization of Factor VIII’s C2 domain

We next solved our bi-objective mixed integer de-immunization model to design sequences of

the identified highly immunogenic region resulting in 21 Pareto-optimal sequences with up to

three simultaneous point mutations (Table 2, Fig 3). Although the model was set up to con-

strain sequence substitutions solely to the identified immunogenic region, the resulting fitness

change was optimized based on the interactions with all sites in that protein domain.

Even though none of the 21 designed sequences were predicted “fitter” than the wild–type,

they were all close to the wild-type fitness. The computed fitness of 20 out of 21 designs resided

in 95% percentile or higher when compared to the whole distribution of single, double, and tri-

ple mutations, suggesting that the protein would remain stable and functional. The sequence

with the highest difference to wild-type fitness prediction (Design-11; V2313M, Y2324L,

V2333E) was in the 90% percentile and still close to WT fitness (reduction of 1.7%). It exhib-

ited also the maximal predicted reduction of immunogenicity (immunogenicity reduction of

45%) deleting eight out of nine epitopes of the identified region. The next-best triple mutant

(Design-12; L2321T, I2327L, V2333E) resulted in the deletion of eight epitopes with an immu-

nogenicity reduction of 42% and a fitness reduction of 1.28%.

Table 2. De-immunization results for mutation loads of k = 1,2,3.

ID Mutation Epitopes ΔI ΔE ΔFoldX

wt 16

0 V2333E 11 -0.38 1.14 0.95

1 L2321F 16 2.25 0.83 0.7

2 Q2335H 16 4.91 0.77 0.07

3 Y2324L,V2333E 9 -2.16 6.47 0.56

4 Y2324H,V2333E 10 -1.84 5.96 3.78

5 R2326K,V2333E 10 -1.84 4.31 2.67

6 L2321T,V2333E 10 -1.59 3.68 2.13

7 L2321Y,V2333E 11 -1.01 3.48 1.7

8 L2321F,V2333E 12 -0.99 1.97 1.66

9 V2333E,Q2335H 12 0.43 1.93 1

10 L2321F,Q2335H 17 4.3 1.47 0.57

11 V2313M,Y2324L,V2333E 8 -2.52 7.99 0.16

12 L2321T,I2327L,V2333E 8 -2.39 6.47 3.1

13 L2321F,R2326K,V2333E 10 -2.21 5.32 3.36

14 V2313M,L2321T,V2333E 9 -1.95 5.16 1.61

15 L2321F,I2313V,V2333E 10 -1.92 4.92 3.29

16 L2321F,I2313L,V2333E 10 -1.53 4.61 2.78

17 V2313T,L2321F,V2333E 10 -1.36 4.58 1.49

18 V2313M,L2321F,V2333E 11 -1.34 3.52 0.99

19 L2321F,Y2324F,V2333E 12 -1.05 3.26 0.93

20 L2321F,V2333E,Q2335H 13 -0.19 2.62 1.44

21 L2321F,Y2324F,Q2335H 17 4.24 2.55 0.21

https://doi.org/10.1371/journal.pcbi.1005983.t002
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Previous work that aims to increase the likelihood of a functional protein after mutation

design, has used force-field based modeling, such as FoldX [32]. As to distinguish the differ-

ences between FoldX and the employed maximum entropy model we predicted the mutation

effects of the 21 designs with the EV model and FoldX (Table 2). The predictions of the maxi-

mum entropy model only moderately correlate to those using FoldX (r = 0.44, CI95 = [0.02,

0.73], t = 2.173, df = 20, p-value = 4.2e-2; Fig 4). The two most deviating mutations between

the two prediction methods were Design-11 (V2313M, Y2324L, V2333E) and Design-3

(Y2324L, V2333E), both of which introduced a mutation at a membrane-binding site[42].

FoldX predicted these designs comparatively less deleterious than the predictions of the maxi-

mum entropy model. One explanation for this discrepancy is that it would be harder for force-

field based methods to capture the membrane binding constraints unless they were in the

structure used.

Experimental validation

To test the designs, we synthesized twenty overlapping 15-mer peptides containing the intro-

duced mutations and their wild-type counterparts. The peptides maximally covered the pre-

dicted epitopes around the mutations of all designed constructs that contained one and two

mutations (Supplementary S2 Table). The affinity of these peptides to the three HLA alleles

was measured at time zero and after 24 hours (Methods, Supplementary S3 and S4 Tables).

Fig 3. Pareto front of de-immunized designs in percent change compared to the wild type with k = 1,2,3 mutations.

Each design is a tradeoff between the immunogenicity and the protein fitness function and represents a new sequence

(here represented as tertiary structures). Immunogenicity is approximated by the HLA binding affinity predictions for

a set of HLA molecules weighted by their HLA allele frequency in a specific population. The red spheres within the

tertiary structures mark the mutated residues.

https://doi.org/10.1371/journal.pcbi.1005983.g003
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We linearly combined the measured relative affinity scores across HLA alleles weighted by

their allele frequencies for each peptide respectively to produce a score that approximates the

overall immunogenicity (Fig 5A). Results are presented for measurements taken at time point

zero. Measurements made after 24 hours were very similar (r = 0.94, CI95 = [0.86, 0.98], t =

11.81, df = 17, p-value = 1.3e-09) and thus resulted in similar correlations. Overall, the mea-

sured and predicted immunogenicity of the tested peptides correlated well with r = 0.76 (CI95 =

[0.48, 0.91], t = 4.885, df = 17, p-value = 1.4e-4; Fig 5A). Next, we compared the predicted and

measured gain or loss in immunogenicity for the whole region by reconstructing the targeted

region using overlapping peptides. The measured relative scores were linearly combined (as

previously) and then normalized to the number of overlapping peptides used in the reconstruc-

tion (Fig 5B). The difference in the measured scores between the wild type and mutant regions

can be thought of as a proxy for gain or loss in immunogenicity and correlated well to the pre-

dicted changes (r = 0.86, CI95 = [0.40, 0.97], t = 4.136, df = 6, p-value = 6.1e-3; Fig 5B).

Discussion

This work introduced a novel method to reduce a protein’s immunogenicity while maintain-

ing its structural integrity requiring only sequence information of the target protein. The

method uses a different immunogenicity objective compared to all previous approaches,

accounting for both relative epitope strength and HLA allele frequency information of a target

population. The HLA distribution can differ tremendously between populations influencing

the immunogenicity of a protein and hence the design process should account for the differ-

ence by prioritizing different T-cell epitopes. We further combined these objective functions

in a bi-objective mixed-integer linear program and introduced a novel solving strategy that

Fig 4. Evolutionary couplings-based model and FoldX prediction correlations. The red line is a fitted linear

regression, and the red tube represents its 95-confidence interval. The orange-circled dots are the two mutational

designs with the highest discrepancy. FoldX predicted these two mutations less deleterious compared maximum

entropy model, although both designs introduced a mutation at a membrane-binding site.

https://doi.org/10.1371/journal.pcbi.1005983.g004
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guarantees to find the full and exact Pareto front of our de-immunization model. While

guaranteeing global optimality, an integer linear program imposes constraints on the func-

tional form the immunogenicity and protein fitness objectives can take. Only linear or simple

convex functions can be integrated into an integer linear program, thus prohibiting the use of

non-linear, non-convex prediction models. However, integrating such complex, non-convex

methods would lead to a highly complex optimization problem that is effectively impossible to

solve to optimality for design problems of relevant size.

The fact that the highly immunogenic region, a priori identified during an in silico screen-

ing and independently described by others [19], coincides with a highly evolutionary con-

nected as well as functionally important region underlines the need for methods that are

capable of incorporating functional and structural integrity prediction in the de-immunization

process. The de-immunization model introduced demonstrates the power of such approaches.

The predicted immunogenicity of the complete domain could be reduced by 45% without dis-

rupting the fitness landscape extensively. Moreover, the observed highly significant correla-

tions between measured and predicted immunogenicity both on individual peptide and

(reconstructed) segment level affirmed that the underlying assumptions made by the model

are sufficient to predict the influence of mutation in terms of immunogenicity.

In the case of this Factor VIII domain, we found no advantage to structure and force-field

base approaches to assessing the effect of clinical mutation classification; structure-based

approaches may even be a disadvantage when structure information is incomplete (e.g.,

binding partners not present). This suggests that sequence information may be sufficient for

de-immunization design, and is consistent with the previous observation that sequence

Fig 5. (A) Correlation of experimental and predicted immunogenicity of each peptide. The experimental immuno-

genicity score of a peptide is defined as the linear combination of the individual experimentally determined relative HLA

binding affinity of each HLA allele h 2H weighted by the HLA allele frequency. (B) Correlation of experimental and

predicted immunogenicity of the whole redesigned region. The summarized immunogenicity score of the whole region is

the linear combination of the overlapping peptides used to reconstruct the region, normalized by total number of peptides

used. The predicted immunogenicity scores per peptide were computed according to our immunogenicity objective

function. The red lines are a fitted linear regression and the red tubes represent their 95-confidence interval.

https://doi.org/10.1371/journal.pcbi.1005983.g005

Population-specific de-immunization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005983 March 2, 2018 12 / 19

https://doi.org/10.1371/journal.pcbi.1005983.g005
https://doi.org/10.1371/journal.pcbi.1005983


alignments can be used to identify constrained interacting residues across biomolecules as well

as the effect of mutations [31, 43]. However, high-quality diverse sequence alignments are not

always available, especially for chimeric or synthetic proteins.

In summary, we proposed a novel de-immunization model that integrates quantitative

immunogenicity optimization with sequence-based fitness optimization and used the

approach to design novel C2 domains of Factor VIII that can be further validated for clinical

application using mouse models or T-cell proliferation assays based on PBMCs of HA patients.

The approach will allow bioengineers to reliably explore the design space of the target protein

to select promising candidates for experimental evaluation.

Methods

Pre-processing

To reduce the search space, a filtering approach based on position specific amino acid fre-

quency fi(a) (i.e., conservation) can be applied. Only amino acids at position i 2 {1..n} exceed-

ing a certain frequency threshold z are considered as possible substitution at a site. Hence, the

set of possible substitutions per position is defined as Mi: = {a 2 S|fi(a)� z}. The wild type

amino acid is additionally added if it does not exceed the frequency threshold. This filtering

assumes that variants that are not or infrequently observed are harmful due to either destabiliz-

ing effects, reduction of function, or intervening effects with interaction partners.

Solving a bi-objective integer program

Special strategies must be applied to solve a BOMILP. Popular methods to solve discrete multi-

objective problems include the ε-constraint [44], perpendicular search [45], and the aug-

mented weighted Chebychev method [46]. All have their own limitations. The recently pub-

lished rectangle splitting approach tries to overcome these [47, 48]. For solving the de-

immunization problem, we developed a parallel two-phase version of the rectangle-splitting

approach that can exploit the parallel nature of the algorithm and can effectively utilize mod-

ern distributed computing resources. In the following we sketch the newly developed two-

phase approach.

First, we introduce necessary notations and concepts (adopted from Boland et. al.). Let

z1 ¼ ðz1
1
; z1

2
Þ and z2 ¼ ðz2

1
; z2

2
Þ be two points in solution space with z1

1
� z2

1
and z2

2
� z1

2
. Fur-

ther we define R(z1,z2) to be the rectangle spanned by z1 and z2. A nondominated point within

R(z1,z2) can be found with the following sequential operation (see proof in[47]):

ð1Þ �z1 ¼ min
x2w

z1ðxÞ

s:t : zðxÞ 2 Rðz1; z2Þ

ð2Þ �z2 ¼ min
x2w

z2ðxÞ

s:t : zðxÞ 2 Rðz1; z2Þ and z1 � �z1

These operations will be denoted as ~z ¼ lex minx2X fz1ðxÞ; z2ðxÞ : zðxÞ 2 Rðz1; z2Þg:

As a first step of the two-phase parallel rectangle-splitting approach the boundaries of the

Pareto front are calculated by solving

zT ¼ lex min
x2X
fz1ðxÞ; z2ðxÞ : zðxÞ 2 Rðð� 1;1Þ; ð� 1;1ÞÞg

and

zB ¼ lex min
x2X
fz2ðxÞ; z1ðxÞ : zðxÞ 2 Rðð� 1;1Þ; ð� 1;1ÞÞg
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in parallel (Fig 6A). Then, the search space within R(zT,zB) is evenly constraint based on

boundary conditions enforced w.l.o.g. on z1 (Fig 6B). The boundaries are calculated for a pre-

defined number of constraints m with:

t
z1
i ¼ zT

1
þ

i � ðzB
1
� zT

1
Þ

m
with 1 � i � m:

Each section of the separated search space can be independently searched by solving zi ¼

lex minx2X fz1ðxÞ; z2ðxÞ : zðxÞ 2 Rððtz1
i ; zT

2
Þ; zBÞg and the resulting new nondominated points

can be used as initial approximation of the Pareto front. The found nondominated points

might contain duplicates and might not resemble the complete Pareto front. Therefore, it is

necessary to perform a refinement of the Pareto front to find the remaining nondominated

points. To this end, the nondominated points are sorted in nondecreasing order such that

z1
1
� z2

1
� � � � � zk

1
. Each consecutive pair of points spans a search rectangle R(zi,zj) with i� j.

These rectangles can now be searched in parallel by the rectangle-splitting algorithm (Fig 6C).

The search rectangles are split in half. First, the bottom half RB is searched by solving:

�z 1 ¼ lex min
x2X

z1ðxÞ; z2ðxÞ : zðxÞ 2 R zi
1
;
zi

2
þ zj

2

2

� �

; z j

� �� �

If a nondominated point is found, the upper half RT is further restricted and spans now

R zi; �zi
1
� �;

zi
2
þzj

2

2

� �� �
in which �z 2 ¼ lex minx2X z2ðxÞ; z1ðxÞ : zðxÞ 2 R z i; �zi

1
� �;

zi
2
þzj

2

2

� �� �n o
is

searched. Each newly found point spans a new independent search rectangle Rðzi; �z 2Þ and

Rð�z 1; z jÞ with its adjacent point. These rectangles are searched in parallel with the described

procedure (Fig 6D). If the search operation yielded the known point zj for R zi
1
;
zi
2
þzj

2

2

� �
; z j

� �

and zi for R zi; �zi
1
� �;

zi
2
þzj

2

2

� �� �
accordingly it proofs that the area does not contain further non-

dominated points. The search procedure is carried out until the complete search space has

been explored.

Fig 6. Depiction of the parallel two-phase rectangle splitting approach. (A) First, the boundaries of the Pareto front are identified.

(B) Then, the space between the boundaries is evenly divided and searched in parallel for nondominated points using the ε-constraint

method. (C) The identified nondominated points are used to initiate rectangle search spaces which can be processed in parallel using

the standard rectangle-splitting approach, by splitting the rectangle in half and searching independently the bottom and top half (D). If

the corner points of the rectangles are found during the search, it is proofs, that no further nondominated point resides within the

search space and all points have been identified.

https://doi.org/10.1371/journal.pcbi.1005983.g006

Population-specific de-immunization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005983 March 2, 2018 14 / 19

https://doi.org/10.1371/journal.pcbi.1005983.g006
https://doi.org/10.1371/journal.pcbi.1005983


Inference of the maximum entropy sequence model

Multiple sequence alignments (MSA), created by JackHMMER[49], were used for the infer-

ence of the maximum entropy models of the Factor VIII C2-domain (residues 2,188–2,345

of FA8_HUMAN, Supplementary S1 Material). To optimize residue coverage and MSA diver-

sity, the alignment was created using five search iterations at an E-value threshold of 10−20.

Sequences with 70% or more gaps and columns with over 50% gaps were excluded from subse-

quent statistical inference. To reduce the influence of sampling bias in the inference step,

sequences were clustered at a 90% identity threshold (theta 0.9), and reweighted by the inverse

of the number of cluster members resulting in Meff = 1656 effective sequences. Generally, at

least a Meff/L� 1 is considered necessary to predict the tertiary structure of a protein [31, 50].

Here we achieve a Meff/L� 10 (with L = 157 aa), which should be sufficient to guarantee a

high-quality model. The parameters of the pairwise maximum entropy model and evolution-

ary couplings were then inferred using EVfoldPLM [51] with pseudo-likelihood maximization

[52]. Substitution effects were derived by calculating the difference between the wild-type and

the mutant statistical energy [31]. The validity of the maximum entropy model was verified by

using the precision of the inferred top evolutionary couplings (ECs) between residue pairs

compared to an existing 3D structure. To identify the top ECs a Gaussian-lognormal mixture

model was inferred based on the overall score distribution [28] and the ECs within the tail of

the distribution (ECs with a probability� 0.90 of belonging to the lognormal) were used for

model quality assessment [28].

Hemophilia a severity data and regression analysis

Single point mutation data with known patient severity status was extracted from the Factor

VIII variant database (http://www.factorviii-db.org). The data was filtered for mutations resid-

ing within the C2 domain, which resulted in 40 data points in total (Supplementary S4 Table).

The severity status of each patient was determined based on a one-stage Factor VIII:C and cat-

egorized into three classes–severe (<1%), moderate (1–5%), and mild (>5%). The data points

were unevenly distributed across the classes with 15 severe, 8 moderate, and 17 mild cases.

To train and validate the multinomial and logistic regression models, the data was ran-

domly divided into training and test set (70:30%-split) in a stratified manner. This process was

repeated two hundred times and the prediction performance averaged over the runs.

Experimental design

In order to experimentally verify our in silico predictions for Factor VIII, we utilized the com-

mercial REVEAL HLA-Peptide binding assay of ProImmune (www.proimmune.com). Pep-

tides were synthesized using the PEPscreen custom library synthesis method, yielding high

purity peptides for experimental analysis. HLA-peptide binding was assessed for the three

HLA-DRB1 alleles used in this study (DRB1�15:01, DRB1�03:01 and DRB1�07:01). In short,

the method compares the affinity of the studied peptide to the affinity of a high-affinity control

peptide. Each peptide is then scored for binding to a certain HLA molecule relative to the

score of the control peptide and reported as the percentage of the signal generated by the con-

trol peptide.

Implementation

The two-phase rectangle-splitting solver was implemented in Python 2.7 using the CPLEX

package, Numpy 1.4, and Polygon 2.0.6 package. CPLEX 12.6 was used as backend to solve the

BOMILP models.

Population-specific de-immunization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005983 March 2, 2018 15 / 19

http://www.factorviii-db.org/
http://www.proimmune.com/
https://doi.org/10.1371/journal.pcbi.1005983


Structure-based fitness prediction for validation purposes of the de-immunized Factor VIII

C2 domain constructs were performed with FoldX [32] using default settings for the obtained

mutations. TEPITOPEpan 1.0 was used for epitope prediction.

Statistical analysis

The multinomial and logistic models were fit and evaluated using Scikit-learn 0.18 [53]. The

statistical analysis was conducted with R 3.0.2. Statistical significance was considered at α =

0.05. The specific statistical tests used are indicated in the figures or in the results section.
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